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Abstract

A major challenge to the widespread adoption and de-

ployment of deep neural networks in real-world operational

scenarios relates to issues related to robustness and ability

to deal with uncertainty when making predictions. One of

the most effective strategies for improving robustness and

handling uncertainty used in machine learning is the use

of probabilistic modelling; however, there has been lim-

ited exploration into their use in improving the robustness

of deep neural networks. In this study, we propose a new

framework for improving the prediction robustness of deep

neural network models via the notion of stochastically ac-

tivated network ensembles (SANE), where an ensemble of

deep neural networks with heterogeneous architectures are

stochastically activated such that a subset of networks in

the ensemble that are found to be more reliable for a given

input will be responsible for a prediction. The proposed

SANE framework takes advantage of a probabilistic graph-

ical model to estimate the reliability of each network in the

ensemble in predicting the correct class label for an input

image given the beliefs of other networks. In other words,

the graphical model enables the detection of networks in

the ensemble that are likely to produce reliable predictions

and include them in the final prediction process. The pro-

posed SANE framework is evaluated on both non-targeted

perturbations (e.g., random perturbations) as well as tar-

geted perturbations (e.g., adversarial perturbations). Ex-

perimental results show that the proposed SANE framework

can noticeably improve prediction robustness compared to

a general ensemble approach, as well as providing further

improvements in robustness against targeted perturbations

when combined with additional stochastic mechanisms.

1. Introduction

Deep learning has been responsible for a number of sig-

nificant breakthroughs in the field of machine learning. In

particular, deep neural networks have demonstrated remark-

able results in the field of computer vision for a wide vari-

ety of visual perception tasks ranging from image classifi-

cation and object detection to semantic segmentation and

visual concept discovery [2]. Because of this, deep neu-

ral networks are increasingly being deployed in real-world

operational scenarios. With this increase in real-world de-

ployment, particularly in safety-critical and security appli-

cations, comes the question of their overall prediction ro-

bustness as well as their ability to handle uncertainty.

Deep neural networks face difficulties in capturing

uncertainty directly without additional modifications [9].

While the softmax outputs have been utilized as a con-

fidence value of network in prediction, Gal and Ghahre-

mani [9] illustrated that a deep neural network can be uncer-

tain in their prediction of specific samples while still provid-

ing a high softmax output. The main approaches leveraged

for addressing this limitation are Bayesian techniques, par-

ticularly the use of Bayesian neural networks [22, 5]. How-

ever, training a Bayesian neural network is not a trivial pro-

cess, even with different tricks such as taking advantage of

drop out [9] or modeling weights within a Gaussian pro-

cess [4].

Recent literature has demonstrated that deep neural net-

works are very vulnerable to adversarial perturbations[27],

which are malicious perturbations designed to cause net-

works to make erroneous predictions. Such adversarial per-

turbations can often be so subtle that it is imperceptible to

the human eye, with an extreme case requiring only one

pixel to be perturbed [25]. Furthermore, such adversarial

perturbations do not necessarily require direct access to the

internal mechanisms of a deep neural network, as the prop-

erty of transferability can be leveraged where an adversar-

ial perturbation generated using one deep neural network is

used to fool another deep neural network that the attacker

has no access to. All of these issues with the vulnerabili-

ties of deep neural networks raise bigger concerns over their

overall prediction robustness.

A number of different approaches have been proposed
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to improve the robustness of deep neural networks, partic-

ularly to adversarial perturbations. These methods can be

generally grouped into the following categories: i) using

modified training/input, ii) modifying the deep neural net-

works themselves, and iii) using external deep neural net-

works as network augmentations [2]. Interestingly, it has

often been shown in studies that counter-countermeasures

can be devised to successfully circumvent such methods

for improving the robustness of networks [6, 3]. As a

result, Akhtar and Mian [2] encouraged the development

of new mechanisms that can provide an estimate of the

robustness of deep neural networks to obvious counter-

countermeasures. A recently proposed stochastic mecha-

nism by Xie et al. [29] was demonstrated to provide promis-

ing results, where the effects of adversarial perturbations

may be mitigated by randomly re-sizing input images and

introducing random padding. Unfortunately, this stochastic

mechanism, like many proposed in the literature, lowers the

accuracy on unperturbed data.

Another key strategy that have been explored for improv-

ing the robustness of deep neural networks are ensemble

techniques [1, 24], where the predictions of multiple deep

neural networks are leveraged together to make the final

prediction. In particular, this approach was utilized recently

as a mechanism for improving the robustness of deep neural

networks to adversarial perturbations. The intuition behind

ensemble strategies is that it is less likely for multiple deep

neural networks to make the same wrong prediction for an

adversarially perturbed input. In addition to improving ro-

bustness to adversarially perturbations, such ensemble tech-

niques can also improve prediction accuracy on unperturbed

data. Furthermore, ensemble techniques can reduce the bias

and variance in machine learning models.

Although ensemble techniques that have been previously

proposed for deep neural networks can be very helpful as

a mechanism for improving robustness as well as the han-

dling of uncertainty, the networks within the ensemble are

typically aggregated with equal weighting in the final pre-

diction step of these existing approaches. As such, while

existing approaches reduce the variance of the ensemble in

the final prediction process, they are also susceptible to the

issue where networks within the ensemble that are less reli-

able (i.e., with high bias) for a given scenario will result in

reduced robustness of the overall ensemble.

Inspired by the promise of ensemble techniques but with

the goal of mitigating some of the current drawbacks asso-

ciated with existing approaches, we propose a novel prob-

abilistic graphical model approach to network ensembling

which aggregates the predictions of networks within the

ensemble in a probabilistic fashion to improve robustness,

reduce system bias, while at the same time reduce vari-

ance. Probabilistic modelling is one of the most effec-

tive strategies for improving robustness and handling un-

certainty used in machine learning, but there has been lim-

ited exploration into their use in improving the robustness

of deep neural networks. Given that the ensemble predic-

tion made in the proposed framework is based on a subset

of robust networks that are stochastically activated within

the ensemble via estimating networks reliability made by

the probabilistic graphical model, we will refer to the pro-

posed method as stochastically activated network ensem-

bles (SANE). It is worth noting that, while the computa-

tional complexity of utilizing an ensemble of networks is

indeed a practical challenge, the main focus of this research

is the feasibility and effectiveness of utilizing a probabilis-

tic graphical model to improve the performance of ensem-

ble techniques at improving robustness of deep neural net-

works.

The rest of the paper is organized as follows. First,

the proposed SANE approach is described and explained

in detail in Section 2. The results of comprehensive ex-

periments where we investigated the performance of the

proposed method against state-of-the-art methods (includ-

ing one of the most successful methods for improving ro-

bustness to adversarial perturbations proposed in the NIPS

2017 adversarial attacks and defenses competition [18]) in

improving robustness of deep neural networks to both non-

targeted perturbations as well as targeted perturbations are

presented and discussed in Section 3. Finally, conclusions

are drawn in Section 4.

2. Methodology

One way of defining the robustness of a deep neural net-

work is in terms of its reliability in making correct pre-

dictions under perturbation. A robust deep neural network

should be able to make a consistent prediction when pre-

sented with inputs characterizing the same entity, regardless

of different perturbations being applied. Here, we explore

the notions of ensemble learning and committee-based deci-

sion making for constructing network ensembles as a mech-

anism for improving robustness to various perturbations un-

dergone by a scene. Intuitively, making predictions using

an ensemble of networks should provide better modeling

accuracy and greater robustness. However, with current

approaches proposed for improving robustness leveraging

equal weighting of predictions across all networks in an en-

semble for the final prediction process, the networks within

the ensemble that are less reliable (i.e., with high bias) for

a given scenario can result in reduced robustness of the

overall network ensemble. To address this issue, the pro-

posed SANE framework introduces a probabilistic graphi-

cal model for first estimating the reliability of each network

in the ensemble in predicting the correct class label for the

input image given the beliefs of other networks. This mea-

sure of reliability is then leveraged to stochastically acti-

vate a subset of the networks in the ensemble for the final
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prediction process. Details of each of these aspects of the

proposed SANE framework are described in detail in the

following sections.

2.1. Probabilistic Graphical Model

The most common way to formulating the final predic-

tion process based on a set of deep neural networks in a

network ensemble is the majority voting strategy, where the

class label that is predicted by the majority of networks is

leveraged as the final prediction. However, one major chal-

lenge with such a strategy for determining the final predic-

tion of a network ensemble that must be considered when

leveraged for ”noisy” data under various perturbations is the

fact that a majority of the networks within a network ensem-

ble may end up being wrong in their predictions at the same

time, thus leading to poor robustness in the network ensem-

ble as a whole based on majority voting.

To mitigate this important challenge, the SANE frame-

work introduces a probabilistic graphical model for model-

ing the ensemble of deep neural networks, with each node

in the graph representing a network in the ensemble. The

underlying graph of the probabilistic model is a fully con-

nected graph where each node in the graph is connected to

all other nodes in the graph to represent the relationship of

each deep neural network to all other networks in the net-

work ensemble.

The hidden state in the probabilistic graphical model is

formulated as a binary random variable encoding the relia-

bility of a particular network in the network ensemble for

participating in the final prediction process.

More specifically, the final prediction process using the

probabilistic graphical model can be expressed as a two-step

procedure where,

• The reliable subset of networks are identified by

marginalizing the P (H|X) on each random variable

(i.e., each network in the ensemble)

• The decision from the subset of reliable networks are

aggregated in a weighted voting scheme to calculate

the final prediction.

P (H|X) is the conditional probability of the set of net-

works providing reliable prediction or not given the output

of the Softmax layer in the networks. H = {hi}
N
i=1 encodes

the state of the networks and X represents the set of Soft-

max outputs (confidence values). Figure 1 demonstrates the

underlying graph representation of the proposed graphical

model.

The hidden state hi = {0, 1} is a binary random vari-

able encoding whether the associated network is reliable or

not in the current situation, with 0 encoding unreliability

(i.e., the network is not reliable here for contributing to the

final decision) and 1 encoding reliability (i.e., the network

Figure 1. The proposed probabilistic graphical model in the SANE

framework.

is reliable and should be used in the final prediction pro-

cess). Variational inference is performed through the graph-

ical model, and the networks in the network ensemble with

the state hi = 1 at the inference time are activated to be con-

sidered in the final prediction process of predicting the class

label. Finally, the predictions of the activated networks are

aggregated to provide the final prediction result.

2.2. Stochastically Activated Network Ensembles

The status of each network ni (being reliable or not) in

the ensemble of networks C = {n1, n2, ..., n|C|} is encoded

by hi in the graph G(·). Each node hi in the graph G(·) is

associated to an observation set x̄i ∈ X representing the set

of output from the Softmax layer in the network. By for-

mulating the ensemble of deep neural networks as a fully

connected probabilistic graphical model, each network ni

in the ensemble C is judged by other networks nj , j 6= i in

the ensemble such that the marginalized conditional proba-

bility
∑

hj ,j 6=i P (H|X) illustrates how reliable the network

ni is in contributing to the final prediction process based on

the beliefs of other networks in the graph. The conditional

probability of P (H|X) is formulated as a pairwise undi-

rected graphical model:

P (H|X) =
1

Z

|C|
∏

i=1

φi(hi, x̄i)

|E|
∏

e=1

φe(hej , hek, x̄ej , x̄ek)

(1)

where φi(hi, x̄i) is the unary potential encoding how reli-

able is network ni based on prior knowledge. φe(·) is a

pairwise potential function demonstrating the belief of two

end-node networks nj and nk of the edge e = {j, k} on

each other. E is the set of all edges in the graph where

|E| = |C|×(|C|−1)
2 since the graph is fully connected.
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Unary Potential. The unary potential φi(·) encodes

the prior knowledge about network ni and how reliable it

is when dealing with ”noisy” data under perturbation. To

formulate φi(·) for each network ni, here we take advan-

tage of perturbed examples generated by all other networks

(based on 1000 randomly selected images from each dataset

tested), and the unreliability rate of network ni on those per-

turbed examples is calculated. The goal is to find the like-

lihood of a wrong prediction of network ni by a perturbed

example which is misclassified by network nj , j 6= i. We

therefore, formulate φi(·) as:

φi(hi, xi) =

{

ri ni can be fooled

1− ri otherwise
(2)

where ri is the transfer unreliability rate1 with the range

of (0, 1) on the network ni via the rest of networks in the

ensemble.

Pairwise Potential. The role of a pairwise potential in a

graphical model is to formulate the relation of two end-node

random variables of an edge in the underlying graph of the

conditional probability model.

The pairwise potential should encode the similarity of

two-end nodes being assigned the same label (i.e., here

meaning two nodes are predicting the class label correctly

or the networks are not reliable in predicting the perturbed

data correctly). To measure how similarly the networks be-

have, we take advantage of the Levenshtein distance [20] on

the prediction behavior of the two networks when they are

dealing with perturbed data. The Levenshtein distance is a

metric for measuring the distance between two sequences of

binomial data. The classification outputs of a network for a

set of data are considered as a binomial sequence which en-

codes how the network is behaving. More specifically, a set

of images, I, is selected and perturbed. The set of perturbed

images I is passed to each network. A sequence s̄i is gen-

erated based on the predicted class label for each network

ni. For example, if we assume the networks can predict

10 different classes, the sequence s̄i is comprised of values

from {0, 1, 2, . . . , 9}, such that s̄i(k) shows the predicted

class label for the perturbed image Ik ∈ I via the network

ni. Since the images are perturbed, each network predicts

the labels differently; however, it is a fair assumption that

similar networks (in terms of behaviour) would predict the

same label for the same input image Ik.

To measure the similarity of two networks dealing with

the perturbed images via Levenshtein distance, we use the

s̄k and s̄j of two networks nk and nj with the assumption

that the output sequence of labels describing how a network

1The transfer unreliability rate ri is defined as the ratio of the number

of perturbed examples (generated by other networks) that can lead network

ni to making an incorrect prediction over the total number of perturbed

examples.

is behaving given a set of input. Mathematically, the Lev-

enshtein distance of two sequences s̄k and s̄j , is formulated

as follows:

lj,k(m,n) =











max(m,n) if min(m,n) = 0

min











lj,k(m− 1, n) + 1

lj,k(n,m− 1) + 1

lj,k(n− 1,m− 1) + 1(jm 6=kn)

otherwise.

(3)

where 1jm 6=kn
is an indicator function determines whether

the corresponding elements m and n in the two sequences

are equal or not.

The pairwise potential φe(·) is formulated as follows:

φe(hej , hek, x̄ej , x̄ek) =

{

lj,k
|I| · ‖x̄ej − x̄ek‖ hj 6= hk

(1−
lj,k
|I| ) hj = hk

(4)

where x̄ej is the observation set for the network nj which

is the vector of confidence values corresponding to all class

labels. I is the set of perturbed images which is used for

the training purposes and computing the similarity of the

networks in the training stage. The
lj,k
|I| is computed at the

training stage and it is fixed for the network in test time.

Training. The unary and pairwise potentials have a set

of parameters which need to be trained. The parameters are

trained via a validation set. The parameter of the unary po-

tential is the transferred unreliability rate (ri) which shows

how easily network ni can make incorrect predictions on

the perturbed image generated via another network. To

calculate this parameter, four different perturbation levels

ǫ = {2, 5, 10, 20} are utilized to perturb images and then

the values are averaged to get ri for network ni.

The trainable parameters of the pairwise potential is lj,k
encoding how similar the two networks’ (nj , nk) behaviour

is. The same validation set are utilized to calculate this set

of parameters as well. The images are perturbed by the

method described in section 3.3.1 and then the perturbed

images are averaged together to find the final perturbed im-

ages to input to each network. The prediction output of each

network for the images in the validation set are put together

as a sequence and then the similarity of two networks, lj,k
(nj and nk) are computed based on the Levenshtein dis-

tance between these two sequences which encodes the sim-

ilarity of two networks facing perturbed images.

Inference. The underlying graph of the proposed prob-

abilistic model is a small graph and as a result, it is pos-

sible to perform variational inference [28] algorithms ef-

ficiently. Here we leverage the message passing algo-

rithm [28] through the designed probabilistic graphical

model of the ensemble of the networks to determine the set

of unreliable networks. The marginal probability of each

network ni (node in the graph) being unreliable can be com-

puted easily based on the belief of other nodes (networks)
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in the graph passed to the node (network) ni. After the

message passing is complete, it is possible to compute the

marginal probability for the network ni as

P (hi) =
∑

hj={0,1},j 6=i

P (hi, Hj 6=i|X) (5)

which P (hi = 0) > 0.5 illustrates the network could not

classify the input correctly and it is not reliable based on the

belief of the ensemble of all other networks regarding to the

network ni.

3. Results and Discussion

The robustness of the proposed SANE framework and

state-of-the-art algorithms for improving robustness of deep

neural networks are evaluated through a series of experi-

ments. We will detail our experimental setup for evaluat-

ing the efficacy of the proposed SANE framework, present

quantitative results for our experiments related to robust-

ness of different deep neural network architectures and the

proposed SANE framework under both targeted and non-

targeted perturbation scenarios. First, we examine the be-

haviour of deep neural networks in non-targeted perturba-

tion scenarios to analyze the robustness of different models

in general cases and compare this behavior with targeted

perturbation scenarios. Next, we evaluate the efficacy of

the proposed SANE framework and other tested methods

for improving robustness under targeted perturbation sce-

narios.

3.1. Experimental Setup

The effectiveness of the proposed SANE framework

is examined quantitatively via two different datasets: i)

CIFAR-10 dataset, and ii) NIPS adversarial attack challenge

dataset. The CIFAR-10 dataset [16] is comprised of 32×32
images of 10 different natural image classes. The NIPS ad-

versarial attack challenge [18] dataset is a set of larger im-

age sizes with 1000 different class of natural images derived

from the ImageNet dataset [8]. For comparative analysis

purposes, we also compare the performance of the proposed

SANE framework against RandDef [29], one of the most

successful methods for improving robustness to adversarial

perturbations proposed in the NIPS 2017 adversarial attacks

and defenses competition [18].

3.1.1 Networks Description

The network ensembles used in this study are comprised

of 10 different deep convolutional neural network architec-

tures for each dataset. A variety of networks with both sim-

ple to complex architectures were selected to create the en-

semble of networks. Below is the list of networks selected

for the CIFAR-10 and NIPS challenge experiments. Each

network is assigned a reference number, which will be used

when reporting the results in the following sections.

• CIFAR-10 Dataset: AlexNet (N1) [17],

GoogleNet (N2) [26], Lenet5 (N3) [19],

NIN (N4) [21], ResNet18 (N5) [12],

SqueezeNet (N6) [15], VGG16 (N7) [23],

ResNet50 (N8) [12], SimpNet (N9) [11], and

DenseNet40 (N10) [14].

• NIPS Challenge Dataset: DenseNet161 (N1) [14],

AlexNet (N2) [17], VGG16 (N3) [23],

ResNet18 (N4) [12], ResNet50 (N5) [12],

SqueezeNet (N6) [15], DualPathNet92 (N7) [7],

ResNext101 (N8) [29], NASNet-Mobile (N9) [30],

and Squeeze and Excitiation ResNet50 (N10) [13].

3.2. Robustness to Non­targeted Perturbations

As the first experiment, we analyze how different net-

work architectures perform in non-targeted perturbation

scenarios. We evaluate 10 different networks introduced

in the previous section on the NIPS challenge dataset un-

der different levels of Gaussian-distributed random pertur-

bations. All networks can make correct predictions about

the tested samples before they were perturbed. Figure 2

demonstrate the accuracy of different models under differ-

ent levels of random perturbation.

Results show that while DualPathNet92, DenseNet191,

RexNext101 and Squeeze and Excitation ResNet50 are the

most robust networks in dealing with lower levels of per-

turbation, RexNext101 is the most robust network when

the level of perturbation increases. On the other extreme,

SqueezeNet architecture demonstrates the poorest robust-

ness in dealing with random perturbations and after that,

VGG, AlexNet and even ResNet50 provide the lowest ro-

bustness to random perturbations. To justify this behaviour,

one reason can be the architecture complexity of the more

robust networks compared to others; as the generally more

complex networks are showing more robustness to the

Gaussian-distributed random perturbations.

The proposed SANE framework is also examined un-

der the non-targeted perturbations. Results demonstrate

that SANE can provide noticeably greater robustness when

compared to each network independently. The committee

of the networks ensemble is the combination of 10 differ-

ent networks introduced in the previous section. As seen in

Figure 2, some of the networks are performing very poorly

under the random perturbations, which suggests that hav-

ing more robust networks in the committee would result in

greater robustness for SANE.

3.3. Robustness to Targeted Perturbations

Here, we examine the efficacy of the proposed SANE

framework in improving robustness to targeted perturba-

107



Figure 2. The robustness of different network architectures in

dealing with non-targeted perturbation (in this study, Gaussian-

distributed random perturbations). The input images (NIPS chal-

lenge dataset) are perturbed at different levels and are passed to the

networks for making the classification prediction. Results demon-

strate that the smaller networks are more prone to the random per-

turbations when compared to more complex architectures.

tions. Here, we will examine targeted perturbations in the

form of adversarial perturbations. These types of perturba-

tions are specifically designed to be small with respect to

the image while greatly affecting the robustness of the deep

neural network in making correct predictions. This particu-

lar property of adversarial perturbation makes it very well-

suited for illustrating the robustness of a deep neural net-

work, since such subtle nature of the perturbation makes

them particularly devastating in real-world operational sce-

narios since they are designed to go visually undetected.

3.3.1 Targeted Perturbation Generation

We use fast gradient sign method (FGSM) attack to gen-

erate targeted perturbations in order to examine the robust-

ness of deep neural networks and our proposed framework.

FGSM [10] is a single-step white-box adversarial perturba-

tion that uses the loss of the network as a perturbation to

input x:

xadv = x+ ǫ · sign
(

∇xL
(

f(x; θ), y
)

)

(6)

where xadv is the adversarial image, x the original image, ǫ

is a small scalar that restricts the norm of the perturbation,

sign(·) is the sign function, ∇f(·) computes the gradient

of the loss function L(·) between the network prediction y

under model parameters θ.

In order to provide a targeted perturbed input to the full

network ensemble, FGSM perturbation for each network in

the ensemble is first found, and a universal perturbation for

Figure 3. The robustness of different network architectures in deal-

ing with targeted perturbations generated by FGSM method. Re-

sults show that the more robust networks seen in non-targeted per-

turbation experiments are among the most robust networks when

dealing with targeted perturbations as well. The vertical blue lines

show the specific perturbation levels used for the experiments in

the next sections.

the network ensemble is found following a similar averag-

ing approach used in Strauss et al. [24].

3.3.2 Evaluation Methods

To have a more comprehensive evaluation, the proposed

SANE framework is examined with two test set of 1000 im-

ages – one from CIFAR-10 dataset, the other from NIPS ad-

versarial attack challenge dataset. The images are randomly

selected from the set of all images correctly classified by all

networks in the ensemble, which is consistent with evalua-

tion methodologies in existing literature. This is a separate

set from the one used in the formulation of φi(.) in equation

2. The proposed SANE framework is examined under four

different perturbation levels of ǫ = {2, 5, 10, 20} generated

by FGSM and compared with two other methods, as well as

combinations of these two:

• EnsembleDef [24]: This technique involves using a

network ensemble for improving robustness of deep

neural networks, where a general voting mechanism is

leveraged with all networks having equal contribution

in the decision making process.

• RandDef [29]: This technique involves randomly re-

sizing and padding the input before being fed into the

network to improve the robustness of the network by

reducing the perturbation level of the input image. It

was demonstrated to be one of the best mechanisms to

improve robustness of networks in the NIPS 2017 ad-

versarial attacks and defenses competition [18], even
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Table 1. CIFAR-10 transferability rate experiment. This Table

shows the robustness of each network when given a targeted per-

turbation generated from other networks. Columns represent net-

works used to generate the perturbed data, rows show the success

rate (misclassification error) of these perturbed data on each net-

work. The diagonal values demonstrate the success rate for tar-

geted perturbation for on leading a network to make an incorrect

prediction.
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

N1 0.678 0.129 0.111 0.141 0.037 0.050 0.082 0.043 0.040 0.052

N2 0.341 0.829 0.140 0.133 0.076 0.076 0.098 0.078 0.073 0.077

N3 0.305 0.181 0.858 0.240 0.219 0.162 0.133 0.239 0.227 0.245

N4 0.289 0.109 0.197 0.478 0.123 0.093 0.064 0.136 0.121 0.148

N5 0.307 0.293 0.448 0.325 0.886 0.316 0.264 0.589 0.499 0.547

N6 0.303 0.159 0.287 0.232 0.252 0.341 0.120 0.286 0.236 0.265

N7 0.295 0.160 0.162 0.141 0.127 0.108 0.799 0.124 0.120 0.130

N8 0.251 0.237 0.384 0.258 0.445 0.237 0.230 0.856 0.463 0.467

N9 0.166 0.161 0.287 0.179 0.325 0.163 0.143 0.414 0.658 0.386

N10 0.224 0.110 0.344 0.228 0.442 0.202 0.183 0.502 0.467 0.732

Table 2. NIPS adversarial attack challenge transferability rate ex-

periment. The same experiment as Table 1 is conducted for the

ImageNet dataset. It is interesting that the networks that showed

robustness against targeted perturbation (generated by FGSM) for

CIFAR-10 dataset are not the robust network when the training

data is NIPS challenge dataset. Therefore, it is hard to claim a sin-

gle network can be robust against different forms of perturbations

and different datasets.
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

N1 0.805 0.009 0.032 0.050 0.065 0.010 0.041 0.064 0.013 0.030

N2 0.049 0.844 0.051 0.053 0.043 0.057 0.039 0.041 0.047 0.047

N3 0.067 0.036 0.841 0.084 0.065 0.036 0.039 0.040 0.032 0.048

N4 0.078 0.035 0.070 0.902 0.082 0.041 0.045 0.052 0.028 0.052

N5 0.092 0.013 0.051 0.081 0.771 0.018 0.051 0.071 0.024 0.041

N6 0.082 0.099 0.095 0.109 0.078 0.936 0.068 0.060 0.062 0.076

N7 0.060 0.011 0.020 0.032 0.043 0.009 0.652 0.067 0.010 0.027

N8 0.075 0.009 0.026 0.042 0.063 0.011 0.059 0.694 0.013 0.032

N9 0.103 0.089 0.108 0.119 0.010 0.094 0.088 0.089 0.736 0.087

N10 0.045 0.011 0.027 0.037 0.037 0.012 0.030 0.032 0.014 0.525

when the targeted perturbation is generated by prior

knowledge about the prediction mechanism.

3.4. Results

We first analyze the effect of targeted perturbation on

different networks and compare the results with when the

perturbation is a non-targeted as described in Section 3.2.

Figure 3 demonstrates the robustness of each network in

dealing with different targeted perturbations with different

levels of perturbations, as measured by the modeling accu-

racy. As seen the more robust networks identified during

the non-targeted perturbation experiments are also the most

robust networks when dealing with targeted perturbations.

However, the least robust network is not Squeezenet here,

which was the case in non-targeted perturbations, and in

fact can provide better robustness compared to some other

tested deep neural networks.

The performance results of the proposed SANE frame-

work are compared with two different methods to address

targeted perturbations as well (and combination of the two):

i) EnsembleDef [24], and ii) RandDef [29], and iii) Rand-

Def + EnsembleDef. We also provide the accuracy of the

best single network on the original input image (Single-Best

Network) under targeted perturbation as a reference point.

Results show that it is possible to incorporate the random

resizing and padding approach as pre-processing and com-

bine it with SANE to improve the robustness of prediction

in dealing with targeted perturbations.

3.4.1 Perturbation Transferability

To examine the effect of each network in the ensemble of

the networks on other networks, as the first experiment the

perturbation transferability of each network on another net-

work via the two mentioned datasets are experimented. A

set of 1000 selected images for the validation purposes are

utilized to generate targeted perturbed images via each net-

work in the ensemble and then the generated perturbed im-

ages (via each network) are utilized to examine other net-

works in the ensemble. It is worth to mention that the

FGSM approach is utilized to generated the perturbed im-

ages for this experiment.

Table 1 demonstrates the perturbation transferability of

each network on the rest of the networks in the ensemble

based on the CIFAR-10 dataset. Each column in the Table 1

shows the success rate of the targeted perturbed images by

the network model specified in the header of the column

to make other networks misclassify the sample. Moreover,

the diagonal values in the Table specify the error rate of the

networks. The interesting observation is that the network

models NIN (N4) and SqueezeNet (N6) are more robust to

targeted perturbations compared to other networks. On the

other hand, GoogleNet (N2), SqueezeNet (N6) and VGG16

(N7) have the lowest misclassification when dealing with

targeted perturbations.

Table 2 shows the same experiment for the ImageNet

dataset. DualPathNet (N7) and ResNet101 (N10) are the

most robust networks in the set while SqueezeNet (N6) and

NasNet-MobileNet (N9) are the weakest network in gen-

erating targeted perturbed images to cause other networks

to make incorrect predictions. It is also interesting that al-

though SqueezeNet showed the best robustness against tar-

geted perturbation for the CIFAR-10 dataset, it has one of

the lowest performances for the ImageNet dataset which

shows consistent results with non-targeted perturbations.

Based on these observations, it can be seen that it is dif-

ficult to design a general network architecture that can be

robust against all forms of perturbations for all different ap-

plications and it has been shown that in each application

there is a specific network architecture that provides the best

robustness against the perturbation. Due to this fact, having

ensemble of networks for making predictions would help
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Table 3. Accuracy of the proposed SANE framework compared to other mechanisms based on the CIFAR-10 dataset. The proposed SANE

framework outperforms both EnsembleDef and RandDef, and achieves comparable results to when both EnsembleDef and RandDef are

combined together. Furthermore, the combination of RandDef and SANE outperforms all other tested methods.

Noise Level Single-Best Network RandDef [29] EnsembleDef [24] RandDef + SANE RandDef + SANE

EnsembleDef

FGSM (ǫ = 2.0) 74.2% 52.4% 99.3% 74.0% 99.3% 72.0%

FGSM (ǫ = 5.0) 66.0% 49.6% 93.6% 75.0% 96.2% 79.0%

FGSM (ǫ = 10) 62.0% 46.0% 70.7% 64.0% 78.2% 57.0%

FGSM (ǫ = 20) 53.7% 41.5% 43.7% 68.0% 50.3% 61.0%

Table 4. Accuracy of the proposed SANE framework compared to other methods based on the NIPS adversarial attack dataset. Results

consistently show that not only does SANE outperform both RandDef and EnsembleDef, but the combination of RandDef and SANE can

provide the best performance against the targeted perturbations.

Noise Level Single-Best Network RandDef [29] EnsembleDef [24] RandDef + SANE RandDef + SANE

EnsembleDef

FGSM (ǫ = 2.0) 70.4% 90.0% 99.5% 100.0% 99.6% 99.8%

FGSM (ǫ = 5.0) 53.4% 70.9% 96.8% 98.2% 97.1% 98.4%

FGSM (ǫ = 10) 43.3% 62.3% 89.4% 92.6% 91.3% 92.5%

FGSM (ǫ = 20) 39.7% 55.3% 79.2% 83.3% 82.9% 85.3%

greatly to improve robustness.

3.4.2 Robustness Against Targeted Perturbation

In this section we analyze the robustness of the proposed

SANE framework against targeted perturbation (i.e., gener-

ated by FGSM approach). Table 3 shows the experimen-

tal results for the CIFAR-10 dataset. The results show that

the proposed SANE framework outperforms both RandDef

and the best performing network in the ensemble across all

perturbation levels. Furthermore, SANE provides similar

performance as EnsembleDef for ǫ = 2, but outperforms

EnsembleDef for all noise levels above that. This is most

illustrative by the reported result for ǫ = 10 and ǫ = 20
where SANE can achieve 8% and 7% higher accuracy, re-

spectively, when compared to EnsembleDef.

The proposed SANE framework is also compared to

the combination of RandDef and EnsembleDef (i.e., Rand-

Def+EnsembleDef) as well. Furthermore, we also experi-

mented with the combination of RandDef and SANE (i.e.,

RandDef+SANE). Results demonstrate that RandDef could

not improve robustness when used in conjunction with En-

sembleDef or SANE in this case. The poor performance of

RandDef can be justified by the fact that since CIFAR-10

images are small (32× 32), randomly resizing and padding

them reduces the amount of information in the image and

thus causes a drop in modeling accuracy.

Table 4 demonstrates the experimental results for all

tested methods for the ImageNet trained models. The

results show a very similar trend as those observed in

the CIFAR-10 experiments, with SANE outperforming

RandDef across all perturbation levels. Similarly, SANE

achieved similar accuracy as EnsembleDef at ǫ = 2, but

outperforms EnsembleDef significantly at higher perturba-

tion levels. What differs from the CIFAR-10 experimental

observations is the fact that here, in the ImageNet experi-

ments, RandDef performs noticeably better than the perfor-

mance of the single-best network, which illustrates its ef-

fectiveness for improving robustness in the situation where

the image size is sufficiently large. Finally, it is observed

that the combination of RandDef with SANE (i.e., Rand-

Def+SANE) provides additional robustness over SANE, es-

pecially at the highest perturbation levels, leading Rand-

Def+SANE to provide the highest robustness to targeted

perturbations out of all tested methods.

4. Conclusion

In this study, we proposed a new probabilistic approach

to improve the robustness of ensembles of deep neural net-

works. In the proposed stochastically activated network en-

sembles (SANE) framework, a subset of reliable deep neu-

ral networks in the ensemble are determined and activated

based on a fully-connected probabilistic graphical model

for the final prediction process. Experimental results using

CIFAR-10 and ImageNet demonstrated the effectiveness of

the proposed SANE framework at improving robustness in

prediction when compared to other state-of-the-art frame-

works for improving robustness. In addition, we showed

that it is possible to combine SANE with other mechanisms

to further improve robustness to in targeted perturbation

scenarios. Future work will focus on a more efficient way

to leverage the proposed SANE framework for practical ap-

plications where computational constraints is limited.
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